STRESSES IN ROTATING DISCS MULTIPLE CHOICE QUESTIONS (MCQ) WITH ANSWERS
STRESSES IN ROTATING DISCS
MULTIPLE CHOICE QUESTIONS
(MCQ) WITH ANSWERS
MCQ help in better understanding of
stresses in rotating discs. topic. It
increases clarity too. All this help
in the practical applications of the subject
fundamentals. It is helpful in research
& further improvements.
Fig. Hollow Rotating Disc
Fig. Stressed Element Rotating Disc
Fig. Stresses & Displacements in a Solid Rotating Disc
Fig. Stresses & Displacements in a Hollow Rotating Disc
Q1. The major stresses in a rotating disc are
-
σh and σl
-
hoop σh and σr
-
σr and σl
-
None
ANS (b)
Q2. Stresses in a rotating disc exists only at
-
Low speed
-
Medium speed
-
High speed
-
None
ANS: (c)
Q3. Types of rotating discs are
-
Hollow and trapezoidal
-
Solid and trapezoidal
-
Trapezoidal and square
-
None
ANS (d)
Q4. Various types of rotating discs are
-
Solid and trapezoidal
-
Hollow and solid
-
Trapezoidal and square
-
None
ANS (b)
Q5. A disc of uniform strength means
-
σh = σallow
-
σr = σallow
-
Radial σr =hoop σh= σallow
-
None
ANS : (c )
Q6. The thickness of a uniform strength disc varies with radius as
-
Parabolic
-
Linearly
-
Parabolic and linearly
-
None
ANS : (d)
Q7. Uniform strength disc thickness varies with radius as
-
Linearly
-
Parabolic
-
exponentially
-
None
ANS : (c)
Q8. The maximum thickness of a uniform strength disc is at the
-
center
-
outer periphery
-
center & at the outer radius
-
None
ANS : (a)
Q9. Variation of hoop and radial stresses in a rotating disc is
(a) Linear
(b) Parabolic
(c) Exponential
(d) None
ANS: (b)
Q10. Stress in a thin rotating disc is
(a) ρ r ω2
(b) m r ω2
(c) ρ r2 ω2
(d) none
ANS: (c )
Q11. Hoop and radial stresses at the center of a solid disc are
-
Double
-
Equal
-
Triple
-
None
ANS: (b)
Q12. Radial and hoop stresses at the outer radius of a solid disc are
-
Equal
-
Double
-
Triple
-
None
ANS: (d)
Q13. Radial stress at the center of a solid disc is
-
Minimum
-
Maximum
-
Zero
-
None
ANS:(b)
Q14. At the outer radius of a solid disc, radial stress is
-
Maximum
-
Minimum
-
Zero
-
None
ANS: (c)
Q15. In a hollow disc, radial stress at the inner radius is
-
Zero
-
Minimum
-
Maximum
-
None
ANS:(a)
Q16. At the outer radius of a solid disc, radial stress is
-
Infinite
-
Minimum
-
Zero
-
None
ANS: (c)
Q17. At the center of a rotating hollow disc, hoop stress is
-
< than the radial stress
-
= to the radial stress
-
> than the radial stress
-
None
ANS: (c)
Q18. At the center of a solid disc, hoop ω stress is given as
(a) (1+μ)ρR2ω2
(b) (3+μ)ρR2ω2
(c) (1–μ)ρR2ω2
(d) None
ANS: (b)
Q19. Radial stress at the center of a solid rotating disc is
(a) (1+μ)ρR2ω2
(b) (3+μ)ρR2ω2
(c) (1–μ)ρR2ω2
(d) None
ANS: (b)
Q20. Maximum hoop stress in a hollow rotating disc is
(a) (ρω2/4)[(3+μ)Ro2 +(1-μ) Ri2] at r=Ri
(b)(ρω2/8)[(3+μ)Ro2 +(1-μ) Ri2] at r=Ri
(c)(ρω2/4)[(3-μ)Ro2 +(1-μ) Ri2] at r=Ri
(d) None
ANS: (a)
Q21. Maximum radial stress in a hollow rotating disc is
(a)(ρω2/4)[(3+μ)(Ro –Ri)2 at r=Ri
(b) ((ρω2/4)[(3+μ)(Ro –Ri)2at r=(Ri Ro)0.5
(c) ((ρω2/8)[(3+μ)(Ro –Ri)2at r=(Ri Ro)0.5
(d) None
ANS: (c )
Q22. Hollow rotating disc, hoop stress at the outer radius is
-
> than the radial stress
-
< than the radial stress
-
= to the radial stress
-
None
ANS: (a)
Q23. Stresses in a rotating disc are due to
(a) Longitudinal force
(b) Radial force
(c) Longitudinal & radial force
(d) None
ANS: (b)
Q24. Type of stress in a rotating disc is
(a) Electrical
(b) Thermal
(c) Mechanical
(d) None
ANS: (c )
Q25. Radial stress at the outer radius of a hollow disc is
(a) Maximum
(b) Minimum
(c) Zero
(d) None
ANS: (c)
Q26. Radial stress in a hollow disc is maximum at a radius equal to
(a) Inside radius
(b) Outside radius
(c) Inside and outside radius
(d) None
ANS: (d)
Q27. Radial stress is maximum in a hollow disc at the
(a) Inside radius +outside radius
(b) Inside radius x outside radius
(c) Geometric mean radius
(d) None
ANS: (c )
https://www.mesubjects.net/wp-admin/post.php?post=10592&action=edit MCQ Initially curved
https://www.mesubjects.net/wp-admin/post.php?post=4179&action=edit MCQ Bending stresses in beams