REFRIGERATION CHARTS AND TABLES CLASS NOTES
REFRIGERATION CHARTS
AND TABLES CLASS NOTES
Working substance in refrigeration is
vapor. Gas laws do not apply to vapors.
Vapors have complicated equations of state.
These are laborious for analysis. Hence
charts and tables are in use.

Martin How Equation Of State
P =RT/ (vB) + (A_{2}+B_{2}+C_{2} e^{kT/TC})/ (vB)^{2}
+ (A_{3}+B_{3}+C_{3 }e^{kT/TC})/ (vB)^{3} +——
WHERE B, A2, B2, C2, A3, B3, C3, A4 —are 11 constants
T_{c} is the critical temperature
R is the refrigerant constant
2.RedlichKwong Equation Of State
P = RT/ (Vb) —a/ [T^{0.5} V (V+b)]
Where V is molar volume
T_{c} is the critical temperature
p_{c} is the critical pressure ‘
a = 0.4278R2 T_{c}^{2.5}/p_{c}
b = 0.0867RT_{c}/p_{c}
These equations require lot of time for calculating the various thermodynamic properties. Therefore to save time in the analysis, standard tables and charts are available in literature. Use these in the analysis of the vapor compression refrigeration systems.
TEMPERATURE ENTROPY CHART
As entropy is a thermodynamic property. It is like other thermodynamic properties such as pressure/internal energy/enthalpy. Entropy is abscissa (x –coordinate). ABSOLUTE temperature is as the ordinate. This chart is very useful in comparing the performance of various heat engine and refrigeration cycles.
Although entropy is an extensive (depends on mass) thermodynamic property. Yet, its concept comes from the second law of thermodynamics (Clausius inequality). Conventionally it is in maximum use as an intensive property in kJ/kg K.
Fig. Temperature Entropy Chart
Constant Pressure Line is ABCD
Another Constant Pressure Line is EFGH
Constant temperature Line is Horizontal.
Constant Entropy Line is Vertical.
Area on this diagram heat quantity.
PRESSURE ENTHALPY CHART
Fig: Pressure Enthalpy chart
ph chart contains
(i) Isothermal lines
vertical in subcooled region
horizontal in two phase region
curve like in superheated region
FGHI is Constant Temperature Line.
JKLM is another Constant Temperature Line.
(ii) Constant pressure lines—————Horizontal Lines
(iii) Constant specific entropy lines——– more Inclined to horizontal and are
plotted in the superheated region
NO and PQ are Constant Entropy Lines.
(iv) Constant specific volume lines————less inclined to horizontal and are
in the superheated region.
RS and TU are Constant Specific Volume Lines.
(v) Vertical Lines are Constant Enthalpy Lines.
(vi) Critical Point—–Point ‘C’ is the critical point.
(vii) Saturated Liquid curve Curve a b c
(viii) Saturated vapor Line—–Curve CDE is the saturated vapor line.
(ix) SUBCOOLED REGION—Towards left of Saturated Liquid Line.
(x) TWOPHASE REGION—In between Saturated Liquid Line and Saturated Vapor Line.
(xi) SUPERHEATED REGION——–Towards Right of Saturated Vapor Line.
(xii) GASES REGION———Towards Right of Saturated Vapor Region where Degree of Superheat is >50^{0 }C
REFRIGERANT TABLES
These contain the values of specific properties of saturated liquid and dry saturated vapors. Calculate the properties of subcooled liquid and super heated vapors using specific properties of saturated liquid and dry saturated vapors.