COMBINED AXIAL AND BENDING LOADS CLASS NOTES
COMBINED AXIAL AND
BENDING LOADS CLASS NOTES
It is applicable for a beam column.
A beam carries transverse loads
(bending loads) and a column
carries an axial compressive load.
Examples of such beams are
chimneys, dams, retaining wall,
trees, poles and building
structures. Axial compressive
load is due to the self weight
and the bending is due to the
wind affect. There are two combinations.
(i) Axial tensile load with bending
(ii) Axial compressive load with bending
The second gives second order effects.
The bending transverse load causes
deflection in the member. Adding
axial compressive force to the
deflected member creates additional
bending moment. This in turn creates
more moment, which creates more
deflection. This continues till member
becomes unstable.
Fig. A beam under combined Axial and bending loading
STRESSES IN A BEAM COLUMN
(i) Axial stresses are compressive stresses of CONSTANT value, σA =W/A
(ii) Bending stresses are both simultaneously tensile and compressive stresses and are of VARYING values
σb = (M/I) y
(iii) Maximum compressive stress σmax = σA + σb
(iv)Maximum tensile stress σmax = σb – σA i.e. tensile stress is there only if σb > σA.
There are three possible cases
Fig. Three possible Cases of Axial & bending Combined
Case 1 Bending stress is greater the axial stress
σb > σA
First σmax = σA + σb Compressive
Second σmax = σb – σA Tensile
Neutral axis will not coincide with the centroid axis. Neutral axis is towards compressive fibers.
Case 2 Bending stress is equal to the axial stress
σb = σA
First σmax = σA + σb Compressive
Second σmax = σb – σA = 0
Neutral axis will coincide with the centroid axis.
Case 3 Bending stress is lesser than the axial stress
σb < σA
First σmax = σA + σb Compressive
Second σmax = σb – σA Compressive
Neutral axis will not coincide with the centroid axis. Neutral axis will be towards tensile fibers.
In each case, for safe design
First Maximum compressive stress ≤ Allowable compressive stress
Second Maximum tensile stress ≤ Allowable tensile stress
Eccentric Loading
Fig. Eccentric loading equals combined axial & bending loadings
It is applicable for cases where self weight is not negligible as compared to the external load. The example of such cases is a beam column. A beam carries transverse loads (bending loads) and a column carries an axial compressive load. Examples of beam column are chimneys, dams, retaining wall, trees, poles, buildings and structures. Axial compressive load is due to the self weight and the bending is due to the wind effect or water pressure.
Eccentric loading=Axil load +Moment = Axial and bending combined
https://www.mesubjects.net/wp-admin/post.php?post=3454&action=edit Bending stresses